These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of anaerobic glycolysis and oxidative substrate selection on contractile function and mechanical efficiency during moderate severity ischemia. Author: Zhou L, Huang H, McElfresh TA, Prosdocimo DA, Stanley WC. Journal: Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H939-H945. PubMed ID: 18660443. Abstract: The role of anaerobic glycolysis and oxidative substrate selection on contractile function and mechanical efficiency during moderate severity myocardial ischemia is unclear. We hypothesize that 1) preventing anaerobic glycolysis worsens contractile function and mechanical efficiency and 2) increasing glycolysis and glucose oxidation while inhibiting free fatty acid oxidation improves contractile function during ischemia. Experiments were performed in anesthetized pigs, with regional ischemia induced by a 60% decrease in left anterior descending coronary artery blood flow for 40 min. Three groups were studied: 1) no treatment, 2) inhibition of glycolysis with iodoacetate (IAA), or 3) hyperinsulinemia and hyperglycemia (HI + HG). Glucose and free fatty acid oxidation were measured using radioisotopes and anaerobic glycolysis from net lactate efflux and myocardial lactate content. Regional contractile power was assessed from left ventricular pressure and segment length in the anterior wall. We found that preventing anaerobic glycolysis with IAA during ischemia in the absence of alterations in free fatty acid and glucose oxidation did not adversely affect contractile function or mechanical efficiency during myocardial ischemia, suggesting that anaerobic glycolysis is not essential for maintaining residual contractile function. Increasing glycolysis and glucose oxidation with HI + HG inhibited free fatty acid oxidation and improved contractile function and mechanical efficiency. In conclusion, these results show a dissociation between myocardial function and anaerobic glycolysis during moderate severity ischemia in vivo, suggesting that metabolic therapies should not be aimed at inhibiting anaerobic glycolysis per se, but rather activating insulin signaling and/or enhancing carbohydrate oxidation and/or decreasing fatty acid oxidation.[Abstract] [Full Text] [Related] [New Search]