These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanisms to concentrate the urine: an opinion.
    Author: Halperin ML, Kamel KS, Oh MS.
    Journal: Curr Opin Nephrol Hypertens; 2008 Jul; 17(4):416-22. PubMed ID: 18660679.
    Abstract:
    PURPOSE OF REVIEW: Our goal is to suggest how the renal concentrating mechanism is regulated in vivo. RECENT FINDINGS: The majority of descending thin limbs of the loop of Henle lack aquaporin-1 water channels, and loops of Henle in the inner medulla lack urea transporters. SUMMARY: Lack of water permeability in the descending thin limbs of the loop of Henle offers several advantages. First, since much less water is added to the outer medullary interstitial compartment, inhibitory control mechanisms on sodium and chloride reabsorption from the medullary thick ascending of loop of Henle initiated by water addition from the medullary collecting duct can be effective. Second, recycling of urea is efficient, as little urea will be washed out of the medulla. Third, delivery of a larger volume of filtrate to the medullary thick ascending limb of the loop of Henle permits both an appreciable reabsorption of sodium along with only a small fall in the luminal concentration of sodium in each of these liters. Hence there need be only a small lumen positive voltage in the medullary thick ascending limb of the loop of Henle. The absence of urea transporters in the loop of Henle in the inner medulla is required for a passive mechanism of sodium and chloride reabsorption in the inner medulla. Control of urea reabsorption from the medullary collecting duct is needed to prevent excessive oliguria in electrolyte-poor urine.
    [Abstract] [Full Text] [Related] [New Search]