These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Dipole tracing of visual evoked potentials in human brain]. Author: Shevelev IA, Mikhaĭlova ES, Kulikov MA, Slavutskaia AV. Journal: Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):151-62. PubMed ID: 18661777. Abstract: 3D tracing of equivalent current dipoles (ECDs) of averaged human visual evoked potentials (VEP) by their distribution across a 34-electrode array was obtained under short presentation of pattern-onset stimuli (sets of 45 horizontal, vertical bars or crosses). Using a 2-dipole spherical three-layer model, we dynamically (step of 1 ms) localized dipoles in four healthy subjects. Dipole locations were matched to anatomical brain regions visualized in structural MRI. Best-fitting source parameters were superimposed on MR images of each subject to identify the anatomical structures giving rise to the surface patterns. It was found that during 50-300 ms following the onset of the stimuli, the ECDs in all subjects were localized in the occipital cortex and demonstrated reliable systematic shift in localization. Two local (1-2 cm3) zones of the preferable dipole attendance were found at 5-6 cm behind zero line: the first one was localized near the midline of the brain, whereas the other zone was situated in the right hemisphere at a distance of 6-7 cm from the first zone. Their localization and strength of activation were reliably different for crosses and lines and changed during VEP generation. Zones of relatively rare dipole attendance were found also. The data are discussed in relation to localization of initial and endpoint of ECDs trajectories, as well as with sensitivity of the visual cortex to line crossing and branching.[Abstract] [Full Text] [Related] [New Search]