These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the catalytic activity of the gamma-phage lysin, PlyG, specific for Bacillus anthracis.
    Author: Kikkawa HS, Ueda T, Suzuki S, Yasuda J.
    Journal: FEMS Microbiol Lett; 2008 Sep; 286(2):236-40. PubMed ID: 18662316.
    Abstract:
    Bacillus anthracis causes anthrax, a lethal disease affecting humans that has attracted attention due to its bioterrorism potential. PlyG is a lysin of gamma-phage, which specifically infects B. anthracis and lyses its cell wall. PlyG contains a T7 lysozyme-like amidase domain, which appears to be the catalytic domain, in the N-terminal region and has a high degree of sequence similarity with PlyL, which is an N-acetylmuramoyl-l-alanine amidase encoded by the B. anthracis genome. Here, we demonstrated that two amino acid residues of PlyG, H29 and E90, are necessary for its catalytic activity in B. anthracis. These residues are structurally analogous to residues whose mutation in T7 lysozyme abolished its catalytic activity. A C-terminal deletion mutant of PlyG lacking the core sequence for binding to B. anthracis showed completely abolished binding activity, unlike PlyL, despite high sequence similarity with PlyL in the N-terminal region. This suggests that the C-terminal binding domain, as well as the N-terminal catalytic domain, is essential for the catalytic activity of PlyG. Our observations provide new insights into the mechanism of specific catalysis of PlyG in B. anthracis and may contribute to the establishment of new methods for anthrax therapy.
    [Abstract] [Full Text] [Related] [New Search]