These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Orthogonal projection to latent structures combined with artificial neural networks in non-destructive analysis of Ampicillin powder. Author: Wang B, Liu G, Fei Q, Zuo Y, Ren Y. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1695-700. PubMed ID: 18672396. Abstract: A new method orthogonal projection to latent structures (O-PLS) combined with artificial neural networks is investigated for non-destructive determination of Ampicillin powder via near-infrared (NIR) spectroscopy. The modern NIR spectroscopy analysis technique is efficient, simple and non-destructive, which has been used in chemical analysis in diverse fields. Be a preprocessing method, O-PLS provides a way to remove systematic variation from an input data set X not correlated to the response set Y, and does not disturb the correlation between X and Y. In this paper, O-PLS pretreated spectral data was applied to establish the ANN model of Ampicillin powder, in this model, the concentration of Ampicillin as the active component was determined. The degree of approximation was employed as the selective criterion of the optimum network parameters. In order to compare the OPLS-ANN model, the calibration models that using first-derivative and second-derivative preprocessing spectra were also designed. Experimental results showed that the OPLS-ANN model was the best.[Abstract] [Full Text] [Related] [New Search]