These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chiral distortion in a Mn(IV)(salen)(N3)2 derived from Jacobsen's catalyst as a possible conformation model for its enantioselective reactions. Author: Kurahashi T, Fujii H. Journal: Inorg Chem; 2008 Sep 01; 47(17):7556-67. PubMed ID: 18672873. Abstract: The Mn (IV)(salen)(N 3) 2 complex ( 3) from Jacobsen's catalyst is synthesized, and the X-ray crystal structures of 3 as well as the starting Mn (III)(salen)(N 3)(CH 3OH) complex ( 2) are determined in order to investigate the conformation of the high-valent Mn (IV)(salen) molecule in comparison with that of Mn (III)(salen). The asymmetric unit of the crystal of 3 contains four complexes, all of which adopt a nonplanar stepped conformation effectively distorted by the chirality of the diimine bridge. The asymmetric unit of 2 also contains four complexes. Two of them show a stepped conformation of a lesser degree, but the other two adopt a bowl-shaped conformation. Comparison of the structural parameters shows that the Mn center in 3 is coordinated from both sides by two external axial N 3 ligands with significantly shorter bond lengths, which could induce greater preference for the stepped conformation in 3. The CH 3CN solution of 3 shows circular dichroism with a significantly strong band at 275 nm as compared to 2, suggesting that 3 may adopt a more chirally distorted conformation also in solution. The circular dichroism spectrum of 3 is slightly altered with isodichroic points from 298 to 253 K and shows no further change at temperatures lower than 253 K, suggesting that the solution of 3 contains an equilibrium between two conformers, where a low-energy conformer with more chiral distortion is predominantly favored even at room temperature. Complexes 2 and 3 are thoroughly characterized using various techniques including cyclic voltammetry, magnetic susceptibility, UV-vis, electron paramagnetic resonance, (1)H NMR, infrared spectroscopy, and electrospray ionization mass spectrometry.[Abstract] [Full Text] [Related] [New Search]