These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Advanced glycation endproducts induce photocrosslinking and oxidation of bovine lens proteins through type-I mechanism.
    Author: Fuentealba D, Friguet B, Silva E.
    Journal: Photochem Photobiol; 2009; 85(1):185-94. PubMed ID: 18673320.
    Abstract:
    Advanced glycation endproducts (AGEs) have been suggested as photosensitizers that are capable of mediating eye lens photo-damage during aging. In the present work, we investigate the photo-crosslinking and oxidation of bovine lens proteins sensitized by AGEs, with special regard to low oxygen conditions. A mechanistic study was conducted using different oxygen concentrations and specific additives with the aim either to scavenge or enhance Type-I or Type-II photoprocesses. Quantum yields for Trp decomposition were determined at 5%, 20% and 100% O(2), in the presence of ferricyanide and D(2)O to elucidate the mechanism of action of AGEs. Type-I mechanism proved to be the most efficient pathway for AGE-sensitized Trp decomposition at low oxygen concentration. Photocrosslinking of lens proteins and crystallin fractions due to Type-I interaction was observed. The influence of the oxygen concentration and additives was also studied. The results show that both Type-I mechanism and oxygen-mediated reactions contribute to protein crosslinking. Carbonyl group formation due to protein photo-oxidation was detected with Oxyblot technique. The generation of high levels of hydrogen peroxide during the irradiations was detected and attributed mainly to Type-I reactions. The results support that AGEs act preferentially as Type-I sensitizers at the low oxygen concentration found in the lens and are capable of inducing protein crosslinking, oxidation and peroxide formation.
    [Abstract] [Full Text] [Related] [New Search]