These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia. Author: Tang S, Machaalani R, Waters KA. Journal: Brain Res; 2008 Sep 26; 1232():195-205. PubMed ID: 18674523. Abstract: Brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a significant role in the regulation of cell growth, survival and death during central nervous system development. The expression of BDNF and TrkB is affected by noxious insults. Two insults during the early post-natal period that are of interest to our laboratory are exposure to nicotine and to intermittent hypercapnic hypoxia (IHH). Piglet models were used to mimic the conditions associated with the risk factors for the sudden infant death syndrome (SIDS) including post-natal cigarette smoke exposure (nicotine model) and prone sleeping where the infant is subjected to re-breathing of expired gases (IHH model). We aimed to determine the effects of nicotine and IHH, alone or in combination, on pro- and rhBDNF and TrkB expression in the developing piglet brainstem. Four piglet groups were studied, with equal gender ratios in each: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry, and studying six nuclei of the caudal medulla, we found that compared to controls, TrkB was the only protein significantly decreased after nicotine and nic+IHH exposure regardless of gender. For pro-BDNF and rhBDNF however, observed changes were more evident in males than females exposed to nicotine and nic+IHH. The implications of these findings are that a prior nicotine exposure makes the developing brainstem susceptible to greater changes in the neurotrophic effects of BDNF and its receptor TrkB in the face of a hypoxic insult, and that the effects are greater in males than females.[Abstract] [Full Text] [Related] [New Search]