These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Crystal structure of glucose-6-phosphate isomerase from Thermus thermophilus HB8 showing a snapshot of active dimeric state.
    Author: Yamamoto H, Miwa H, Kunishima N.
    Journal: J Mol Biol; 2008 Oct 10; 382(3):747-62. PubMed ID: 18675274.
    Abstract:
    Glucose-6-phosphate isomerase (GPI) is a glycolytic enzyme with ill-defined oligomeric state. In order to obtain insight into the correlation between oligomerization and the catalytic function of this enzyme, the crystal structure of GPI from the extreme thermophile Thermus thermophilus HB8 (TtGPI) has been determined at 1.95 A resolution. The crystallographic asymmetric unit contains an apparent dimer. The core fold of protomer and the interprotomer spatial arrangement of the dimer are similar to those of already reported crystal structures of other GPIs. The active site is located on the dimer interface, and putative catalytic residues are well conserved among the GPIs. These results suggest that the observed dimeric state of TtGPI in the crystal is biologically relevant and that this enzyme uses a common catalytic mechanism for the isomerase reaction. Gel-filtration chromatography, chemical cross-linking, sedimentation equilibrium by analytical ultracentrifugation, and dynamic light-scattering experiments indicate that TtGPI exists in a dynamic equilibrium between monomeric and dimeric states in solution. Several factors potentially contributing to the thermal stability of TtGPI protomer were identified: (i) a decrease in denaturation entropy by the shorter polypeptide length and by amino acid composition, including the increased number of proline residues and a higher arginine-to-lysine ratio; (ii) a larger number of ion pairs; and (iii) a reduction in cavity volume. From these results, it is suggested that transient dimer formation is sufficient for the catalytic function and that the TtGPI protomer itself has intrinsically higher thermal stability.
    [Abstract] [Full Text] [Related] [New Search]