These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Roles of phosphatidylinositol 3-kinase-Akt and NADPH oxidase in adenosine 5'-triphosphate-sensitive K+ channel function impaired by high glucose in the human artery.
    Author: Kinoshita H, Matsuda N, Kaba H, Hatakeyama N, Azma T, Nakahata K, Kuroda Y, Tange K, Iranami H, Hatano Y.
    Journal: Hypertension; 2008 Sep; 52(3):507-13. PubMed ID: 18678787.
    Abstract:
    The present study was designed to examine roles of the phosphatidylinositol 3-kinase-Akt pathway and reduced nicotinamide-adenine dinucleotide phosphate oxidases in the reduced ATP-sensitive K(+) channel function via superoxide produced by high glucose in the human artery. We evaluated the activity of the phosphatidylinositol 3-kinase-Akt pathway, as well as reduced nicotinamide-adenine dinucleotide phosphate oxidases, the intracellular levels of superoxide and ATP-sensitive K(+) channel function in the human omental artery without endothelium. Levels of the p85-alpha subunit and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunits, including p47phox, p22phox, and Rac-1, increased in the membrane fraction from arteries treated with D-glucose (20 mmol/L) accompanied by increased intracellular superoxide production. High glucose simultaneously augmented Akt phosphorylation at Ser 473, as well as Thr 308 in the human vascular smooth muscle cells. A phosphatidylinositol 3-kinase inhibitor LY294002, as well as tiron and apocynin, restored vasorelaxation and hyperpolarization in response to an ATP-sensitive K(+) channel opener levcromakalim. Therefore, it can be concluded that the activation of the phosphatidylinositol 3-kinase-Akt pathway, in combination with the translocation of p47phox, p22phox, and Rac-1, contributes to the superoxide production induced by high glucose, resulting in the impairment of ATP-sensitive K(+) channel function in the human visceral artery.
    [Abstract] [Full Text] [Related] [New Search]