These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart.
    Author: Vamvaca K, Jelesarov I, Hilvert D.
    Journal: J Mol Biol; 2008 Oct 17; 382(4):971-7. PubMed ID: 18680748.
    Abstract:
    An engineered monomeric chorismate mutase (mMjCM) has been found to combine high catalytic activity with the characteristics of a molten globule. To gain insight into the dramatic structural changes that accompany binding of a transition-state analog, we examined mMjCM by isothermal calorimetry and compared it with its dimeric parent protein, MjCM (CM from Methanococcus jannaschii), a thermostable and conventionally folded enzyme. As expected for a ligand-induced ordering process, there is a large entropic penalty for binding to the monomer relative to the dimer (-TDeltaDeltaS=5.1+/-0.5 kcal/mol, at 20 degrees C). However, this unfavorable entropy term is largely offset by enthalpic gains (DeltaDeltaH=-3.5+/-0.4 kcal/mol), presumably arising from tightening of non-covalent interactions throughout the monomeric complex. Stopped-flow kinetic measurements further reveal that the catalytic molten globule binds and releases ligands significantly faster than its natural counterpart, demonstrating that partial structural disorder can speed up molecular recognition. These results illustrate how structural plasticity may strongly perturb the thermodynamics and kinetics of transition-state recognition while negligibly affecting catalytic efficiency.
    [Abstract] [Full Text] [Related] [New Search]