These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Trifunctional agents as a design strategy for tailoring ligand properties: irreversible inhibitors of A1 adenosine receptors.
    Author: Boring DL, Ji XD, Zimmet J, Taylor KE, Stiles GL, Jacobson KA.
    Journal: Bioconjug Chem; 1991; 2(2):77-88. PubMed ID: 1868116.
    Abstract:
    The 1,3-phenylene diisothiocyanate conjugate of XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]- oxy]phenyl]-1,3-dipropylxanthine, a potent A1 selective adenosine antagonist) has been characterized as an irreversible inhibitor of A1 adenosine receptors. To further extend this work, a series of analogues were prepared containing a third substituent in the phenyl isothiocyanate ring, incorporated to modify the physiochemical or spectroscopic properties of the conjugate. Symmetrical trifunctional cross-linking reagents bearing two isothiocyanate groups were prepared as general intermediates for cross-linking functionalized congeners and receptors. Xanthine isothiocyanate derivatives containing hydrophilic, fluorescent, or reactive substituents, linked via an amide, thiourea, or methylene group in the 5-position, were synthesized and found to be irreversible inhibitors of A1 adenosine receptors. The effects of the 5-substituent on water solubility and on the A1/A2 selectivity ratio derived from binding assays in rat brain membranes were examined. Inhibition of binding of [3H]-N6-(2-phenylisopropyl)-adenosine and [3H] CGS21680 (2-[2-[4-carboxyethyl)phenyl]ethyl]amino] adenosine-5'-N-ethylcarboxamide) at central A1 and A2 adenosine receptors, respectively, was measured. A conjugate of XAC and 1,3,5-triisothiocyanatobenzene was 894-fold selective for A1 receptors. Reporter groups, such as fluorescent dyes and a spin-label, were included as chain substituents in the irreversible binding analogues, which were designed for spectroscopic assays, histochemical characterization, and biochemical characterization of the receptor protein.
    [Abstract] [Full Text] [Related] [New Search]