These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temperature of systems out of thermodynamic equilibrium.
    Author: Garden JL, Richard J, Guillou H.
    Journal: J Chem Phys; 2008 Jul 28; 129(4):044508. PubMed ID: 18681661.
    Abstract:
    Two phenomenological approaches are currently used in the study of the vitreous state. One is based on the concept of fictive temperature introduced by Tool [J. Res. Natl. Bur. Stand. 34, 199 (1945)] and recently revisited by Nieuwenhuizen [Phys. Rev. Lett. 80, 5580 (1998)]. The other is based on the thermodynamics of irreversible processes initiated by De Donder at the beginning of the last century [L'Affinite (Gauthier-Villars, Paris, 1927)] and recently used by Moller et al. for a thorough study of the glass transition [J. Chem. Phys. 125, 094505 (2006)]. This latter approach leads to the possibility of describing the glass transition by means of the freezing-in of one or more order parameters connected to the internal structural degrees of freedom involved in the vitrification process. In this paper, the equivalence of the two preceding approaches is demonstrated, not only for glasses but in a very general way for any system undergoing an irreversible transformation. This equivalence allows the definition of an effective temperature for all systems departed from equilibrium generating a positive amount of entropy. In fact, the initial fictive temperature concept of Tool leads to the generalization of the notion of temperature for systems out of thermodynamic equilibrium, for which glasses are just particular cases.
    [Abstract] [Full Text] [Related] [New Search]