These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Syntheses, structures, and spectroscopic properties of K9Nd[PS4]4, K3Nd[PS4]2, Cs3Nd[PS4]2, and K3Nd3[PS4]4. Author: Wu Y, Bensch W. Journal: Inorg Chem; 2008 Sep 01; 47(17):7523-34. PubMed ID: 18686946. Abstract: Four new quaternary alkali neodymium thiophosphates K 9Nd[PS 4] 4 ( 1), K 3Nd[PS 4] 2 ( 2), Cs 3Nd[PS 4] 2 ( 3), and K 3Nd 3[PS 4] 4 ( 4) were synthesized by reacting Nd with in situ formed fluxes of K 2S 3 or Cs 2S 3, P 2S 5 and S in appropriate molar ratios at 973 K. Their crystal structures are determined by single crystal X-ray diffraction. Crystal data: 1: space group C2/ c, a = 20.1894(16), b = 9.7679(5), c = 17.4930(15) A, beta = 115.66(1) degrees , and Z = 4; 2: space group P2 1/ c, a = 9.1799(7), b = 16.8797(12), c = 9.4828(7) A, beta = 90.20(1) degrees , and Z = 4; 3: space group P2 1/ n, a = 15.3641(13), b = 6.8865(4), c = 15.3902(13) A, beta = 99.19(1) degrees , and Z = 4; 4: space group C2/ c, a = 16.1496(14), b = 11.6357(7), c = 14.6784(11) A, beta = 90.40(1) degrees , and Z = 4. The structure of 1 is composed of one-dimensional (1) infinity{Nd[PS 4] 4} (9-) chains and charge balancing K (+) ions. Within the chains, eight-coordinated Nd (3+) ions, which are mixed with K (+) ions, are connected by [PS 4] (3-) tetrahedra. The crystal structures of 2 and 3 are characterized by anionic chains (1) infinity{Nd[PS 4] 2} (3-) being separated by K (+) or Cs (+) ions. Along each chain the Nd (3+) ions are bridged by [PS 4] (3-) anions. The difference between the structures of 2 and 3 is that in 2 the Nd (3+) ions are coordinated by four edge-sharing [PS 4] (3-) tetrahedra while in 3 each Nd (3+) ion is surrounded by one corner-sharing, one face-sharing, and two edge-sharing [PS 4] (3-) tetrahedra. The structure of 4 is a three-dimensional network with K (+) cations residing in tunnels running along [110] and [110]. The {Nd(1)S 8} polyhedra share common edges with four [PS 4] tetrahedra forming one-dimensional chains (1) infinity{Nd[PS 4] 2} (3-) running along [110] and [110]. The chains are linked by {Nd(2)S 8} polyhedra yielding the final three-dimensional network (3) infinity{Nd[PS 4] 2} (3-). The internal vibrations of both crystallographically independent [PS 4] (3-) anions of 2- 4 have been assigned in the range 200-650 cm (-1) by comparison of their corresponding far/mid infrared and Raman spectra (lambda exc = 488 nm) on account of locally imposed C 1 symmetry. In the Fourier-transform-Raman spectrum (lambda exc = 1064 nm) of 2- 4, very similar well-resolved electronic Raman (ER) transitions from the electronic Nd (3+) ground-state to two levels of the (4)I 9/2 ground manifold and to the six levels of the (4)I 11/2 manifold have been determined. Resonant Raman excitation via a B-term mechanism involving the (4)I 15/2 and (4)F 3/2 intermediate states may account for the significant intensity enhancement of the ER transitions with respect to the symmetric P-S stretching vibration nu 1. Broad absorptions in the UV/vis/NIR diffuse reflectance spectrum at 293 K in the range 5000-25000 cm (-1) of 2- 4 are attributed to spin-allowed excited quartet states [ (4)(I < F < S < G < D)] and spin-forbidden doublet states [ (2)(H < G < K < D < P)] of Nd (3+). A luminescense spectrum of 3 obtained at 15 K by excitation with 454.5 nm shows multiplets of narrow lines that reproduce the Nd (3+) absorptions. Sharp and intense luminescence lines are produced instead by excitation with 514.5 nm. Lines at 18681 ( (4)G 7/2), 16692 ( (4)G 5/2), 14489 ( (4)F 9/2), and 13186 cm (-1) ( (4)F 7/2) coincide with the corresponding absorptions. Hypersensitive (4)G 5/2 is split by 42 cm (-1). The most intense multiplet at about 16500 cm (-1) is assigned to the transition from (4)G 5/2 to the Stark levels of the ground manifold (4)I 9/2.[Abstract] [Full Text] [Related] [New Search]