These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype.
    Author: Bellik L, Musilli C, Vinci MC, Ledda F, Parenti A.
    Journal: Exp Cell Res; 2008 Oct 01; 314(16):2965-74. PubMed ID: 18692498.
    Abstract:
    Circulating endothelial progenitor cells (EPCs) can contribute to neovascularization, even if the mechanisms by which they interact with mature endothelial cells remain unclear. The interactions between human coronary artery endothelial cells (HCAECs) and peripheral blood mononuclear cells (PBMCs) during their early differentiation towards an EPC phenotype were investigated. A co-culture model, in which the two cell types share the same culture medium in the absence of any exogenous angiogenic stimulus, was used. The role of hypoxia was assessed by pretreating HCAECs with 3% O(2) before co-culture setting. Since we have previously shown that both adherent and suspended PBMCs display a significant increase in endothelial marker expression within the 2nd day of culture in an angiogenic environment, the role of HCAECs on early PBMC differentiation was evaluated in both adherent and suspended cell fractions. A 3-day co-culture period increased the expression of VEGF-R2, VE-cadherin, alpha(v)beta(3)- and alpha(5)-integrin in both the adherent and suspended PBMCs, assessed by cytofluorimetric analysis, and up-regulated VEGF-R1 mRNA assessed by real-time RT-PCR. HCAECs influenced PBMC adhesion, transendothelial migration and cell organization on Matrigel. Hypoxia modulated either PBMC differentiation or their functional properties. These data strongly suggest that endothelium may support the differentiation of PBMCs into EPCs.
    [Abstract] [Full Text] [Related] [New Search]