These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Construction of intrakine mutant SDF-1alpha/54/KDEL and its inhibiting effects upon CXCR4 expression on cell membrane].
    Author: Chen H, Tan Y, Guo Z, Ma W, Cai S, Du J, Huang J, Hu H, Cai S.
    Journal: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):647-51, 677. PubMed ID: 18693449.
    Abstract:
    To investigate the impact of phenotypic knockout of CXCR4 on Molt-4 cells via intrakine technology,the C-terminal alpha-helix gene SDF-1alpha/54/KDEL of human stromal cell-derived Faceor-1 deletion is fused to a retention signal 4-peptide -KDEL that retains the newly synthesized receptor within the Molt-4 cells endoplasimc reticulum. Subsequently, PCR is used to amplify the target gene SDF-1alpha/54/ KDEL from the constructed plasmid SDF-WT-Gly x 4-Dec/PET-30a(+) at its C-terminal and subclone it into eukaryotic expression vectors pEGFP-C3 for generating recombinant vector cells by lipEGFP-C3/SDF-1alpha/54/KDEL, and then have it sequenced. After the transfection of recombinant plasmids into COS-7 posome, SDF-1alpha/54/KDEL protein is confirmed with Western blot. The recombinant plasmids pEGFP-C3/SDF-1alpha/54/KDEL are isolated and transiently transfected in Molt-4 cells by electroporation. Flow cytometric analysis shows a dramatic reduction of CXCR4 expression on Molt-4 cells. The conclusion is that SDF-1alpha/54/KDEL could assume a role in the phenotypic knockout of CXCR4, and the findings suggest that the inhibiting effect of SDF-1alpha/54 against CXCR4 is not influenced by the deletion of SDF-1alpha helix at the C terminal.
    [Abstract] [Full Text] [Related] [New Search]