These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway.
    Author: Lin SS, Huang HP, Yang JS, Wu JY, Hsia TC, Lin CC, Lin CW, Kuo CL, Gibson Wood W, Chung JG.
    Journal: Cancer Lett; 2008 Dec 08; 272(1):77-90. PubMed ID: 18701210.
    Abstract:
    Curcumin, a major component of the Curcuma species, is known to have antioxidant, anti-inflammatory properties and induce apoptosis of cancer cells, however, the precise molecular mechanisms of apoptosis in vitro are unclear. In this study, we showed that curcumin, a plant product containing the phenolic phytochemical, caused DNA damage and endoplasmic reticulum (ER) stress and mitochondrial-dependent-induced apoptosis through the activation of caspase-3 at a treatment concentration of 30 microM in human lung cancer A-549 cells. In contrast, treatment with 5-10 microM of curcumin did not induce significant apoptosis, but rather induced G2/M-phase arrest in A-549 cells. Flow cytometric analysis indicated that curcumin directly increased intracellular oxidative stress based on the cell permeable dye, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) acting as an indicator of reactive oxygen species (ROS) generation. GADD153 and GRP78 were increased by curcumin which was indicative of ER stress. Curcumin increased Ca(2+) levels and the mitochondrial membrane potential (DeltaPsi(m)), was decreased in A-549 cells. Overall, our results demonstrated that curcumin treatment causes cell death by activating pathways inducing G2/M-phase arrest and apoptosis.
    [Abstract] [Full Text] [Related] [New Search]