These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures.
    Author: Walspurger S, Boels L, Cobden PD, Elzinga GD, Haije WG, van den Brink RW.
    Journal: ChemSusChem; 2008; 1(7):643-50. PubMed ID: 18702167.
    Abstract:
    CO(2)-free hydrogen can be produced from coal gasification power plants by pre-combustion decarbonisation and carbon dioxide capture. Potassium carbonate promoted hydrotalcite-based and alumina-based materials are cheap and excellent materials for high-temperature (300-500 degrees C) adsorption of CO(2), and particularly promising in the sorption-enhanced water gas shift (SEWGS) reaction. Alkaline promotion significantly improves CO(2) reversible sorption capacity at 300-500 degrees C for both materials. Hydrotalcites and promoted hydrotalcites, promoted magnesium oxide and promoted gamma-alumina were investigated by in situ analytical methods (IR spectroscopy, sorption experiments, X-ray diffraction) to identify structural and surface rearrangements. All experimental results show that potassium ions actually strongly interact with aluminium oxide centres in the aluminium-containing materials. This study unambiguously shows that potassium promotion of aluminium oxide centres in hydrotalcite generates basic sites which reversibly adsorb CO(2) at 400 degrees C.
    [Abstract] [Full Text] [Related] [New Search]