These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Automated characterization of nerve fibers labeled fluorescently: determination of size, class and spatial distribution. Author: Prodanov D, Feirabend HK. Journal: Brain Res; 2008 Oct 03; 1233():35-50. PubMed ID: 18703026. Abstract: Morphological classification of nerve fibers could help interpret the assessment of neural regeneration and the understanding of selectivity of nerve stimulation. Specific populations of myelinated nerve fibers can be investigated by retrograde tracing from a muscle followed by microscopic measurements of the labeled fibers at different anatomical levels. Gastrocnemius muscles of adult rats were injected with the retrograde tracer Fluoro-Gold. After a survival period of 3 days, cross-sections of spinal cords, ventral roots, sciatic, and tibial nerves were collected and imaged on a fluorescence microscope. Nerve fibers were classified using a variation-based criterion acting on the distribution of their equivalent diameters. The same criterion was used to classify the labeled axons using the size of the fluorescent marker. Measurements of the axons were paired to those of the entire fibers (axons+myelin sheaths) in order to establish the correspondence between so-established axonal and fiber classifications. It was found that nerve fibers in L6 ventral roots could be classified into four populations comprising two classes of Aalpha (denoted Aalpha1 and Aalpha2), Agamma, and an additional class of Agammaalpha fibers. Cut-off borders between Agamma and Agammaalpha fiber classes were estimated to be 5.00+/-0.09 microm (SEM); between Agammaalpha and Aalpha1 fiber classes to be 6.86+/-0.11 microm (SEM); and between Aalpha1 and Aalpha2 fiber classes to be 8.66+/-0.16 microm (SEM). Topographical maps of the nerve fibers that innervate the gastrocnemius muscles were constructed per fiber class for the spinal root L6. The major advantage of the presented approach consists of the combined indirect classification of nerve fiber types and the construction of topographical maps of so-identified fiber classes.[Abstract] [Full Text] [Related] [New Search]