These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bone healing in critical-size defects treated with platelet-rich plasma activated by two different methods. A histologic and histometric study in rat calvaria.
    Author: Messora MR, Nagata MJ, Dornelles RC, Bomfim SR, Furlaneto FA, de Melo LG, Deliberador TM, Bosco AF, Garcia VG, Fucini SE.
    Journal: J Periodontal Res; 2008 Dec; 43(6):723-9. PubMed ID: 18705653.
    Abstract:
    BACKGROUND AND OBJECTIVE: The purpose of this study was to analyze histologically the influence of platelet-rich plasma (PRP) coagulated with two different activators on bone healing in surgically created critical-size defects (CSD) in rat calvaria. MATERIAL AND METHODS: Forty-eight rats were divided into three groups: C, PRP-C and PRP-T. An 8 mm diameter CSD was created in the calvarium of each animal. In group C, the defect was filled by a blood clot only. In groups PRP-C and PRP-T, the defect was filled with PRP activated with either calcium chloride or thromboplastin solution, respectively. Each group was divided into two subgroups (n = 8 per subgroup) and killed at either 4 or 12 weeks postoperatively. Histologic and histometric analyses were performed. The amount of new bone formed was calculated as a percentage of the total area of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance, Tukey's post hoc test, p < 0.05). RESULTS: No defect completely regenerated with bone. Group PRP-C had a statistically greater amount of bone formation than groups C and PRP-T at both time points of analysis. No statistically significant differences were observed between groups C and PRP-T. CONCLUSION: It can be concluded that the type of activator used to initiate PRP clot formation influences its biological effect on bone healing in CSD in rat calvaria.
    [Abstract] [Full Text] [Related] [New Search]