These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pathway engineered enzymatic de novo purine nucleotide synthesis. Author: Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR. Journal: ACS Chem Biol; 2008 Aug 15; 3(8):499-511. PubMed ID: 18707057. Abstract: A general method for isotopic labeling of the purine base moiety of nucleotides and RNA has been developed through biochemical pathway engineering in vitro. A synthetic scheme was designed and implemented utilizing recombinant enzymes from the pentose phosphate and de novo purine synthesis pathways, with regeneration of folate, aspartate, glutamine, ATP, and NADPH cofactors, in a single-pot reaction. Syntheses proceeded quickly and efficiently in comparison to chemical methods with isolated yields up to 66% for 13C-, 15N-enriched ATP and GTP. The scheme is robust and flexible, requiring only serine, NH4+, glucose, and CO2 as stoichiometric precursors in labeled form. Using this approach, U-13C- GTP, U-13C, 15N- GTP, 13C 2,8- ATP, and U-15N- GTP were synthesized on a millimole scale, and the utility of the isotope labeling is illustrated in NMR spectra of HIV-2 transactivation region RNA containing 13C 2,8-adenosine and 15N 1,3,7,9,2-guanosine. Pathway engineering in vitro permits complex synthetic cascades to be effected, expanding the applicability of enzymatic synthesis.[Abstract] [Full Text] [Related] [New Search]