These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis. Author: Gresle MM, Shaw G, Jarrott B, Alexandrou EN, Friedhuber A, Kilpatrick TJ, Butzkueven H. Journal: J Neurosci Res; 2008 Dec; 86(16):3548-55. PubMed ID: 18709652. Abstract: In multiple sclerosis, inflammatory axonal injury is a key pathological mechanism responsible for the development of progressive neurological dysfunction. The injured axon represents a therapeutic target in this disease; however, therapeutic trials of neuroprotective candidates will initially require preclinical testing in an animal model of inflammatory axonal injury and subsequently the development of a reliable paraclinical measure of axonal degeneration in humans. In the present study, we demonstrate the validity of serum phosphorylated neurofilament H (pNF-H) as a marker of axonal injury in murine experimental autoimmune encephalomyelitis (EAE). At the time of maximum disease severity (EAE day 22), the average serum pNF-H level reached 5.7 ng/ml, correlating significantly with the EAE paraplegia score (r = 0.75, P < 0.001). On average, 40% of axons in the spinal cord were lost in EAE, and serum pNF-H levels were highly correlated with axon loss (r = 0.8, P < 0.001). Axonal injury was a severe and acute event, insofar as serum pNF-H levels were not significantly elevated at early (EAE day 12) or late (EAE days 35 and 50) disease time points. Our results demonstrate that acute inflammatory axonal injury is a pathological feature of murine MOG(35-55) EAE, indicating that this model may mirror the acute pathological events in active multiple sclerosis lesions. Furthermore, we have validated the serum pNF-H assay as an unbiased measurement of axonal injury in EAE, facilitating rapid screening of potential neuroprotective therapies in this model.[Abstract] [Full Text] [Related] [New Search]