These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peroxisome proliferator-activated receptor-delta agonist enhances vasculogenesis by regulating endothelial progenitor cells through genomic and nongenomic activations of the phosphatidylinositol 3-kinase/Akt pathway. Author: Han JK, Lee HS, Yang HM, Hur J, Jun SI, Kim JY, Cho CH, Koh GY, Peters JM, Park KW, Cho HJ, Lee HY, Kang HJ, Oh BH, Park YB, Kim HS. Journal: Circulation; 2008 Sep 02; 118(10):1021-33. PubMed ID: 18711014. Abstract: BACKGROUND: Despite the therapeutic potential of endothelial progenitor cells (EPCs) in ischemic vascular diseases, their insufficient numbers limit clinical applications. Peroxisome proliferator-activated receptor (PPAR)-delta belongs to the nuclear hormone receptor superfamily, and its functions in various tissues and cells are almost unexplored, especially with respect to vascular biology. METHODS AND RESULTS: PPAR-delta activation in EPCs phosphorylated Akt, and this phosphorylation was mediated not only by genomic but also by nongenomic pathways through interaction with the regulatory subunit of phosphatidylinositol 3-kinase. PPAR-delta activation with agonist (GW501516 or L-165041) increased the proliferation of human EPCs and protected them from hypoxia-induced apoptosis. In addition, PPAR-delta activation enhanced EPC functions, such as transendothelial migration, and tube formation. These actions by PPAR-delta activation in EPCs were dependent on the phosphatidylinositol 3-kinase/Akt pathway. In ischemic hindlimb of mice models, transplantation of PPAR-delta agonist-treated human or mouse EPCs enhanced blood flow recovery to ischemic limbs compared with vehicle-treated EPCs. In EPCs from PPAR-delta-knockout mice, however, treatment with PPAR-delta agonist did not enhance in vivo vasculogenic potential. Systemic administration of PPAR-delta agonist increased hematopoietic stem cells in bone marrow and EPCs in peripheral blood, leading to improved vasculogenesis with incorporation of bone marrow-derived cells to new vessels in a corneal neovascularization model and limb salvage with better blood flow in an ischemic hindlimb model. CONCLUSIONS: The results of our study suggest that PPAR-delta agonist has therapeutic vasculogenic potential for the treatment of ischemic cardiovascular diseases.[Abstract] [Full Text] [Related] [New Search]