These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bacterial RNase P RNA is a drug target for aminoglycoside-arginine conjugates.
    Author: Berchanski A, Lapidot A.
    Journal: Bioconjug Chem; 2008 Sep; 19(9):1896-906. PubMed ID: 18712898.
    Abstract:
    The ribonuclease P (RNase P) holoenzymes are RNPs composed of RNase P RNA (PRNA) and a variable number of P protein subunits. Primary differences in structure and function between bacterial and eukaryotic RNase P and its indispensability for cell viability make the bacterial enzyme an attractive drug target. On the basis of our previous studies, aminoglycoside-arginine conjugates (AACs) bind to HIV-1 TAR and Rev responsive element (RRE) RNAs significantly more efficiently than neomycin B. Their specific inhibition of bacterial rRNA as well as the findings that the hexa-arginine neomycin derivative (NeoR6) is 500-fold more potent than neomycin B in inhibiting bacterial RNase P, led us to explore the structure-function relationships of AACs in comparison to a new set of aminoglycoside-polyarginine conjugates (APACs). We here present predicted binding modes of AACs and APACs to PRNA. We used a multistep docking approach comprising rigid docking full scans and final refinement of the obtained complexes. Our docking results suggest three possible mechanisms of RNase P inhibition by AACs and APACs: competition with the P protein and pre-tRNA on binding to P1-P4 multihelix junction and to J19/4 region (probably including displacement of Mg2+ ions from the P4 helix) of PRNA; competition with Mg2+ ions near the P15 loop; and competition with the P protein and/or pre-tRNA near the P15 helix and interfering with interactions between the P protein and pre-tRNA at this region. The APACs revealed about 10-fold lower intermolecular energy than AACs, indicating stronger interactions of APACs than AACs with PRNA.
    [Abstract] [Full Text] [Related] [New Search]