These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquids in soil.
    Author: Modelli A, Sali A, Galletti P, Samorì C.
    Journal: Chemosphere; 2008 Nov; 73(8):1322-7. PubMed ID: 18715611.
    Abstract:
    Aerobic biodegradation of ionic liquids in soil was monitored for the first time. The tests, followed over six months according to ASTM D 5988-96, were carried out on the four ionic liquids obtained from 1-R-3-methylimidazolium cations, with R=CH(3)(CH(2))(3) and CH(3)O(CH(2))(2), and the tetrafluoroborate and dicyanamide counter anions. The n-butyl derivatives, after an induction period of about two months, were found to be degradable, although the degradation rate with the dicyanamide anion was smaller. In contrast, no significant production of CO(2) was observed in the tests with the methoxyethyl derivatives. Calculations at the B3LYP/6-31G(d) level were carried out to characterize the atomic charge distributions and frontier orbital structures of 1-alkyl-3-methylimidazolium cations and point out the changes caused by replacement of a CH(2) group of the alkyl chain with an oxygen atom. The calculations predict an overall negative charge on the nitrogen atoms of the imidazolium-based cations. The energies of the highest occupied (pi) MO and lowest empty (pi( *)) MO are only slightly perturbed by the length and nature of the alkyl chain. However, the electron-donor properties of the oxy derivatives are radically increased. The HOMO becomes a lone pair orbital mainly localized on the oxygen atom, and its ionization energy is sizeably smaller than that of the outermost ring pi MO.
    [Abstract] [Full Text] [Related] [New Search]