These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The spectra properties of 2-(2'-hydroxyphenyl)benzothiazole in different solvents]. Author: Zheng JJ, Zhang GL, Wu F, Ma LN, Chen WJ. Journal: Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):970-3. PubMed ID: 18720780. Abstract: 2-(2 -hydroxyphenyl)benzothiazole (HBT) is a typical compound with excited--state intramolecular proton transfer (ESIPT) effect. The mechanism of the influence of the solvent polarity on the ESIPT effect of HBT was investigated by means of absorption and fluorescence spectra in different polar solvents. The absorption spectra of HBT molecule in all solvents have the similar configuration and are mainly situated in the UV region from 260 to 370 nm. The absorption peaks are located at 287 and 335 nm and have the decline trend with the increase in the solvent polarity. In addition, there is a very weak absorption band at 400 nm and it is attributable to the absorption from the keto form of HBT. Under UV excitation at 335 nm, the fluorescence spectra in all the solvents were obtained. All the fluorescence spectra exhibit dual fluorescence peaks, which are located at 385 and 512 nm respectively. The former is attributed to the emission from the HBT enol forms, named the normal fluorescence, and the latter the emission from the keto tautomer emission, named ESIPT fluorescence. The fluorescence spectra of HBT show that the intensity of the normal fluorescence is obviously increased and the intensity of the ESIPT fluorescence is decreased with enhancing the polarity of the solvents. This indicates that the strong polar solvents are not favorable to the ESIPT of HBT. Because the solvated enols in the polar solvent prevent the ESIPT from happening, the ESIPT efficiency of HBT in cyclohexane is the largest and that of HBT in ethanol is the smallest. The three fluorescence bands of HBT in different polarity solvents were observed with 400 nm excitation. One fluorescence band at ca. 510 nm is referred to as the ESIPT fluorescence. This confirms that the weak absorption at 400 nm results from the keto tautomer and the enol and keto forms can coexist under the normal condition, but the enol form is the absolutely predominant. In addition, the other two unknown fluorescent emission bands appear at 436 and 456 nm respectively. Their possible origin is the emission from the deprotonated anion of HBT keto tautomer.[Abstract] [Full Text] [Related] [New Search]