These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves.
    Author: Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I.
    Journal: Plant Cell Environ; 2008 Nov; 31(11):1688-700. PubMed ID: 18721264.
    Abstract:
    The relationship between chloroplast arrangement and diffusion of CO(2) from substomatal cavities to the chloroplast stroma was investigated in Arabidopsis thaliana. Chloroplast position was manipulated by varying the amount of blue light and by cytochalasin D (CytD) treatment. We also investigated two chloroplast positioning mutants. Chloroplast arrangement was assessed by the surface area of chloroplasts adjacent to intercellular airspaces (S(c)). Although it has been previously shown that long-term acclimation to high light is linked with a large S(c), we found that the short-term chloroplast avoidance response reduces S(c). This effect was not apparent in the blue-light-insensitive phot2 mutant, which did not show the avoidance response. As expected, the smaller S(c) induced by the avoidance response was coupled to a similar decrease in internal conductance. This reduction in internal conductance resulted in an increased limitation of the rate of photosynthesis. The limiting effect of S(c) on internal conductance and photosynthesis was also shown in chup1, a mutant with a constant small S(c) as the result of an unusual chloroplast arrangement. We conclude that chloroplast movements in A. thaliana can rapidly alter leaf morphological parameters, and this has significant consequences for the diffusion of CO(2) through the mesophyll.
    [Abstract] [Full Text] [Related] [New Search]