These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor.
    Author: Guo C, Hu F, Li CM, Shen PK.
    Journal: Biosens Bioelectron; 2008 Dec 01; 24(4):825-30. PubMed ID: 18722103.
    Abstract:
    Carbonized TiO(2) nanotubes (TNT/C) prepared by carbonization with organic polymers possess advantages combined from high conductivity of carbon and nanostructure of TiO(2) nanotubes. The material was used as a supporting matrix to immobilize a redox protein, hemoglobin (Hb), to explore its direct electron transfer ability. The apparent heterogeneous electron transfer rate constant (k(ET)) of Hb on TNT/C is 108s(-1), which is much higher than that in the reported works, demonstrating excellent direct electrochemistry behavior. The TNT/C-Hb modified glassy carbon electrode (GCE) demonstrates significant electrocatalytic activity for reduction of hydrogen peroxide with a small apparent Michaelis-Menten constant (87.5 microM). The TNT/C-Hb based H(2)O(2) sensor has a low detection limit (0.92 microM), fast response time (3s) and high dynamic response range (10(-6) to 10(-4)M), a much better performance than the reported works. These results demonstrate that a direct electrochemistry behavior can be significantly enhanced through simple carbon coating on a nanostructured material for higher reaction surface area and better conductivity. This work suggests that Hb-immobilized TNT/C has potential applications in a sensitive H(2)O(2) sensor.
    [Abstract] [Full Text] [Related] [New Search]