These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Analysis of transport of fluorescein across the isolated retinal pigment epithelium-choroid using an ussing type chamber]. Author: Koyano S, Eguchi S, Araie M. Journal: Nippon Ganka Gakkai Zasshi; 1991 May; 95(5):434-40. PubMed ID: 1872214. Abstract: Retinal pigment epithelium (RPE)-choroid preparations from albino rabbits were sealed in an Ussing type chamber under stabilized conditions for 3 hours. The transepithelial potential was 1.2 +/- 0.08 mV and the transepithelial resistance was 175.2 +/- 9.1 omega.cm2 (mean +/- SE, n = 16). The transport of fluorescein across the isolated rabbit RPE-choroid was studied under short circuit condition and outward (vitreous----choroid) and inward (choroid----vitreous) permeability to fluorescein were determined. The outward permeability was 1.63 +/- 0.20 x 10(-5) cm/sec and inward permeability was 0.44 +/- 0.13 x 10(-5) cm/sec (mean +/- SE, n = 8). The former was 4 times greater than the latter (p less than 0.01). The outward permeability was decreased to 1.02 +/- 0.08 x 10(-5) cm/sec (n = 7), 0.75 +/- 0.11 x 10(-5) cm/sec (n = 5), 0.67 +/- 0.11 x 10(-5) cm/sec (n = 6) by 10(-6) M of ouabain, 10(-5) M of 2,4-dinitrophenol and 10(-4) M of probenecid, respectively. Low temperatures (0.5-1.0 degree C) markedly decreased the outward permeability to 0.05 +/- 0.04 x 10(-5) cm/sec (n = 4, mean +/- SE). These results suggest that active transport plays a role in the outward movement of fluorescein across the rabbit RPE-choroid.[Abstract] [Full Text] [Related] [New Search]