These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin degradation. XVIII. On the regulation of glutathione-insulin transhydrogenase in the hyperglycemic obese (ob/ob) mouse.
    Author: Varandani PT, Nafz MA.
    Journal: Biochim Biophys Acta; 1976 Dec 21; 451(2):382-92. PubMed ID: 187226.
    Abstract:
    The occurrence of insulin-degrading activity in the liver of the obese hyperglycemic mouse (ob/ob) and its litter mate has been studied. The trichloroacetic acid-soluble product formed from insulin upon incubation with liver homogenate was identified as the A chain of insulin. In Ouchterlony double-diffusion experiments with antibody to purified rat liver glutathione-insulin transhydrogenase, mouse liver homogenate and the microsomal fraction each gave a single precipitation band of identity with the purified rat liver enzyme. These results indicate that the insulin-degrading activity present in the mouse liver is, in fact, glutathione-insulin transhydrogenase. Subcellular distribution studies of glutathione-insulin transhydrogenase and marker enzymes indicate that the transhydrogenase is located primarily in the microsomal fraction of mouse liver homogenate. The ob/ob mouse, which is a genetic mutant characterized by obesity, hyperinsulinism and resistance to the hypoglycemic action of insulin, contains hepatic glutathione-insulin transhydrogenase activity (per mg microsomal protein) markedly higher (40--60%) than its lean litter mates. However, a major portion of the increased hepatic enzyme in the ob/ob mouse occurs in a latent state; the increased amount of enzyme either is unavailable or is nonfunctional, although the ob/ob mouse still contains more of the functional form than the lean mouse. Thus, the results are consistent with the suggestion that the hepatic glutathione-insulin transhydrogenase is probably under a feedback control by circulating insulin.
    [Abstract] [Full Text] [Related] [New Search]