These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DFT based computational study on the excited state intramolecular proton transfer processes in o-hydroxybenzaldehyde. Author: De SP, Ash S, Bhui Dk, Bar H, Sarkar P, Sahoo GP, Misra A. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1728-35. PubMed ID: 18722808. Abstract: Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of o-hydroxybenzaldehyde (OHBA) were studied using DFT-B3LYP/6-31G(d) and TD-DFT-B3LYP/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer in this compound. Excited states PE calculations support the ESIPT process in OHBA. The contour PE diagram and the variation of oscillator strength along the proton transfer co-ordinate support the dual emission in OHBA. Our calculations also support the experimental observations of Nagaoka et al. [S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita, T. Takemura, J. Phys. Chem. 92 (1988) 166], i.e. normal emission of the title compound comes from S(2) state and the red-shifted proton transfer band appears from the S(1) state. ESIPT process has also been explained in terms of HOMO and LUMO electron density of the enol and keto tautomer of OHBA and from the potential energy surfaces.[Abstract] [Full Text] [Related] [New Search]