These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The protection of Bcl-2 overexpression on rat cortical neuronal injury caused by analogous ischemia/reperfusion in vitro.
    Author: Zhang H, Li Q, Li Z, Mei Y, Guo Y.
    Journal: Neurosci Res; 2008 Oct; 62(2):140-6. PubMed ID: 18723055.
    Abstract:
    Recent studies have suggested that neuronal apoptosis in cerebral ischemia could arise from dysfunction of endoplasmic reticulum (ER) and mitochondria. B-cell lymphoma/leukemia-2 gene (Bcl-2) has been described as an inhibitor both in programmed cell death (PCD) and ER dysfunction during apoptosis, and the Bcl-2 family play a key role in regulating the PCD, both locally at the ER and from a distance at the mitochondrial membrane. However, its signal pathways and concrete mechanisms in endoplasmic reticulum-initiated apoptosis remain incompletely understood. We therefore investigate whether ischemia/reperfusion (I/R) causes neuronal apoptosis in part via cross-talk between ER and mitochondria or not, and how the overexpression of Bcl-2 prevents this form of cell death. Here we show that analogous I/R-induced cell death occurs consequent to interactions of ER stress and mitochondrial death pathways. The participation of the mitochondrial pathway was demonstrated by the release of cytochrome C (cyt C) from mitochondrial into cytoplasmic fractions and caspase-9 cleavage. The involvement of ER stress was further supported by the observable increase of glucose-regulated protein 78(GRP78)/BiP expression and caspase-12 activity. Furthermore, prior to these changes, swelling of the ER lumen and dissociation of ribosomes from rough ER were detected by electron microscopy. Bcl-2 overexpression inhibits the release of cyt C and the activation of caspase-9/-8/-3 but not caspase-12 based on the results of Western blot. These suggest that cross-talk between ER and mitochondria participate in neuronal damage after ischemia/reperfusion. Bcl-2 overexpression could suppress I/R-induced neuronal apoptosis via influencing mitochondrial integrity.
    [Abstract] [Full Text] [Related] [New Search]