These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High frequency of AML1/RUNX1 point mutations in radiation-associated myelodysplastic syndrome around Semipalatinsk nuclear test site. Author: Zharlyganova D, Harada H, Harada Y, Shinkarev S, Zhumadilov Z, Zhunusova A, Tchaizhunusova NJ, Apsalikov KN, Kemaikin V, Zhumadilov K, Kawano N, Kimura A, Hoshi M. Journal: J Radiat Res; 2008 Sep; 49(5):549-55. PubMed ID: 18724045. Abstract: It is known that bone marrow is a sensitive organ to ionizing radiation, and many patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) have been diagnosed in radiation-treated cases and atomic bomb survivors in Hiroshima and Nagasaki. The AML1/RUNX1 gene has been known to be frequently mutated in MDS/AML patients among atomic bomb survivors and radiation therapy-related MDS/AML patients. In this study, we investigated the AML1 mutations in radiation-exposed patients with MDS/AML among the residents near the Semipalatinsk Nuclear Test Site (SNTS), where the risk of solid cancers and leukemias was increased due to the radiation effects. AML1 mutations were identified in 7 (39%) of 18 radiation-exposed MDS/AML patients. In contrast, no AML1 mutation was found in 13 unexposed MDS/AML cases. The frequency of AML1 mutations in radiation-exposed patients with MDS/AML was significantly higher compared with unexposed patients (p < 0.05).We also found a significant correlation between individual estimated doses and AML1 mutations (p < 0.05). Considering these results, AML1 point mutations might be a useful biomarker that differentiates radio-induced MDS/AML from spontaneous MDS/AML.[Abstract] [Full Text] [Related] [New Search]