These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The in vivo mitochondrial two-step maturation of human frataxin. Author: Schmucker S, Argentini M, Carelle-Calmels N, Martelli A, Puccio H. Journal: Hum Mol Genet; 2008 Nov 15; 17(22):3521-31. PubMed ID: 18725397. Abstract: Deficiency in the nuclear-encoded mitochondrial protein frataxin causes Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associating spinocerebellar ataxia and cardiomyopathy. Although the exact function of frataxin is still a matter of debate, it is widely accepted that frataxin is a mitochondrial iron chaperone involved in iron-sulfur cluster and heme biosynthesis. Frataxin is synthesized as a precursor polypeptide, directed to the mitochondrial matrix where it is proteolytically cleaved by the mitochondrial processing peptidase to the mature form via a processing intermediate. The mature form was initially reported to be encoded by amino acids 56-210 (m(56)-FXN). However, two independent reports have challenged these studies describing two different forms encoded by amino acids 78-210 (m(78)-FXN) and 81-210 (m(81)-FXN). Here, we provide evidence that mature human frataxin corresponds to m(81)-FXN, and can rescue the lethal phenotype of fibroblasts completely deleted for frataxin. Furthermore, our data demonstrate that the migration profile of frataxin depends on the experimental conditions, a behavior which most likely contributed to the confusion concerning the endogenous mature frataxin. Interestingly, we show that m(56)-FXN and m(78)-FXN can be generated when the normal maturation process of frataxin is impaired, although the physiological relevance is not clear. Furthermore, we determine that the d-FXN form, previously reported to be a degradation product, corresponds to m(78)-FXN. Finally, we demonstrate that all frataxin isoforms are generated and localized within the mitochondria. The clear identification of the N-terminus of mature FXN is an important step for designing therapeutic approaches for FRDA based on frataxin replacement.[Abstract] [Full Text] [Related] [New Search]