These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Apoptosis vs. oncosis: role of cell volume and intracellular monovalent cations. Author: Orlov SN, Hamet P. Journal: Adv Exp Med Biol; 2004; 559():219-33. PubMed ID: 18727243. Abstract: Several research teams have proposed that shrinkage and swelling in cells undergoing apoptosis and oncosis are not only the earliest morphological markers of the two modes of cell death but are also obligatory steps in the development of the death machinery. We examined this hypothesis as well as the role of monovalent cations as major intracellular osmolytes using vascular smooth muscle cells (VSMC) from the rat aorta and C7-MDCK cells derived from the Madin-Darby canine kidney. 48-hr inhibition of the Na(+)-K+ pump with ouabain did not affect VSMC survival and delayed serum deprivation-induced apoptosis at a step upstream of caspase-3 via elevation of the [Na+]i/[K+]i ratio and the expression of Na+ i-sensitive antiapoptotic genes including mortalin. Transient and modest (15-20%) shrinkage observed in serum-deprived VSMC did not contribute to triggering of the apoptotic machinery. In contrast to VSMC, ouabain led to oncosis of C7-MDCK cells, indicated by swelling and resistance to the pan-caspase inhibitor z-VAD.fmk. In these cells, the death signal was mediated by interaction of ouabain with the Na(+)-K(+)-ATPase alpha-subunit but was independent of the inhibition of Na(+)-K+ pump-mediated ion fluxes and elevation of the [Na+]i/[K+]i ratio.[Abstract] [Full Text] [Related] [New Search]