These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Change of the neocortex nervous tissue in rat ontogenesis after hypoxia at various terms of embryogenesis].
    Author: Vasil'ev DS, Tumanova NL, Zhuravin IA.
    Journal: Zh Evol Biokhim Fiziol; 2008; 44(3):258-67. PubMed ID: 18727413.
    Abstract:
    The performed study has shown that in rats submitted to hypoxia (3 h, 7% O2) at the 14th day of embryogenesis (E14) as compared with control animals, density of disposition of cells in the brain cortex decreased for the first month of postnatal ontogenesis (maximally by 40.8% by P20). In dying neurons, swelling of the cell body, lysis of organoids, and disturbance of the cytoplasmic membrane intactness were observed. Two waved of neuronal death by the mechanism of caspase-dependent apoptosis were revealed; the first involved large pyramidal neurons of the V layer (P10-20), the second--small pyramidal and non-pyramidal neurons of the II--III layers (P20-30). In neuropil of molecular layer, a decrease of the mean amount of labile synaptopodin-positive dendrite spines was observed, as compared with control. In rats exposed to hypoxia at E18, no changes of cell composition and structure of the nervous tissue were found in the studied brain cortex areas. Thus, formation of the cortex nervous tissue in postnatal ontogenesis of rats submitted to hypoxia at the period of neuroblast proliferation-migration is accompanied not only by a change of the cell composition of various cortex layers in early ontogenesis, but also by a decrease of the number of the synaptopodin-positive spines in molecular layer, the decrease being preserved in adult animals.
    [Abstract] [Full Text] [Related] [New Search]