These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving subcellular localization prediction using text classification and the gene ontology. Author: Fyshe A, Liu Y, Szafron D, Greiner R, Lu P. Journal: Bioinformatics; 2008 Nov 01; 24(21):2512-7. PubMed ID: 18728042. Abstract: Each protein performs its functions within some specific locations in a cell. This subcellular location is important for understanding protein function and for facilitating its purification. There are now many computational techniques for predicting location based on sequence analysis and database information from homologs. A few recent techniques use text from biological abstracts: our goal is to improve the prediction accuracy of such text-based techniques. We identify three techniques for improving text-based prediction: a rule for ambiguous abstract removal, a mechanism for using synonyms from the Gene Ontology (GO) and a mechanism for using the GO hierarchy to generalize terms. We show that these three techniques can significantly improve the accuracy of protein subcellular location predictors that use text extracted from PubMed abstracts whose references are recorded in Swiss-Prot.[Abstract] [Full Text] [Related] [New Search]