These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modification of serine 360 by a reactive intermediate of 17-alpha-ethynylestradiol results in mechanism-based inactivation of cytochrome P450s 2B1 and 2B6.
    Author: Kent UM, Sridar C, Spahlinger G, Hollenberg PF.
    Journal: Chem Res Toxicol; 2008 Oct; 21(10):1956-63. PubMed ID: 18729327.
    Abstract:
    17-alpha-Ethynylestradiol (17EE) is a mechanism-based inactivator of P450 2B1 and P450 2B6 in the reconstituted monooxygenase system. The loss in enzymatic activity was due to the binding of a reactive intermediate of 17EE to the apoprotein. P450 2B1 and P450 2B6 were inactivated by 17EE and digested with trypsin. The peptides obtained following digestion with trypsin of 17EE-inactivated P450 2B1 and P450 2B6 were separated by liquid chromatography and analyzed by ESI-MS. Adducted peptides exhibiting an increase in mass consistent with the addition of the mass of the reactive intermediate of 17EE were identified for each enzyme. Analysis of these modified peptides by ESI-MS/MS and precursor ion scanning facilitated the identification of the Ser360 in both enzymes as a site that had been adducted by a reactive intermediate of 17EE. A P450 2B1 mutant where Ser360 was replaced by alanine was constructed, expressed, and purified. Activity and inactivation studies indicated that mutation of the Ser360 residue to alanine did not prevent inactivation of the mutant enzyme by 17EE. These observations suggest that Ser360 is not critical for the catalytic function of these P450s. Spectral binding studies of the 17EE-inactivated P450 2B1 and P450 2B6 indicated that modification of the enzymes by the reactive intermediate of 17EE resulted in an enzyme that was no longer capable of binding substrates. These results suggest that the inactivation by 17EE may be due to modification of an amino acid residue in the substrate access channel near the point of entry into the active site.
    [Abstract] [Full Text] [Related] [New Search]