These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endothelin 1 enhances myofilament Ca2+ responsiveness in aequorin-loaded ferret myocardium. Author: Wang JX, Paik G, Morgan JP. Journal: Circ Res; 1991 Sep; 69(3):582-9. PubMed ID: 1873860. Abstract: The influence of endothelin 1 on intracellular Ca2+ transients and isometric contractions was investigated in ferret papillary muscles loaded with the Ca(2+)-regulated bioluminescent indicator aequorin. In concentrations of 3 x 10(-9) to 1 x 10(-7) M, endothelin produced dose-dependent increases in the amplitudes of both aequorin light signals (maximum, 31 +/- 12%) and developed tension (maximum, 64 +/- 13%). The peak aequorin light [( Ca2+]i)-peak tension curve generated by increasing endothelin concentrations was steeper and shifted to the left of the curve generated by varying [Ca2+]o; however, the maximum developed tension produced by endothelin did not exceed that produced by 6 mM [Ca2+]o. The effect of endothelin on the amplitude of the aequorin light signal was less than the effect of [Ca2+]o for similar levels of tension development. Moreover, 1 x 10(-7) M endothelin caused an upward shift in the peak aequorin light-peak tension curve generated by varying [Ca2+]o and increased the maximum twitch force by about 12%. The contractions were prolonged, whereas the time course of the Ca2+ transient was not changed in the presence of endothelin. When the function of the sarcoplasmic reticulum was inhibited by 6 microM ryanodine, 10(-7) M endothelin still increased the force generation without increasing the intracellular peak Ca2+, either during isometric twitches or during tetani.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]