These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action.
    Author: Hansen DE, Borganelli M, Stacy GP, Taylor LK.
    Journal: Circ Res; 1991 Sep; 69(3):820-31. PubMed ID: 1873875.
    Abstract:
    Transient diastolic dilatation of the isolated canine left ventricle predictably elicits arrhythmias. To test the hypothesis that such arrhythmias may be mediated by sarcolemmal stretch-activated channels, we attempted to inhibit stretch-induced arrhythmias with gadolinium (Gd3+), a potent stretch-activated channel blocker. In experiments with six isolated canine hearts, left ventricular volume was increased for 50 msec during early diastole and then returned to initial volume by a computerized servopump. The stretch volume was adjusted to yield a probability of eliciting a stretch-induced arrhythmia of 95 +/- 2% before treatment with Gd3+. When Gd3+ (1-10 microM) was administered, dose-dependent suppression of stretch-induced arrhythmias was observed. The probability of a stretch-induced arrhythmia was reduced to 13 +/- 10% (p less than 0.05) with 10 microM Gd3+. Washout of Gd3+ completely reversed this effect. Since Gd3+ is known to be a calcium channel antagonist, we compared the effect of Gd3+ on stretch-induced arrhythmias with that of verapamil and nifedipine. These calcium channel blockers produced no demonstrable inhibition of stretch-induced arrhythmias when administered at concentrations (1 microM) that substantially depressed left ventricular pressure development. Thus, our results indirectly implicate stretch-activated channels in the genesis of stretch-induced arrhythmias and provide preliminary evidence for a potential new mode of antiarrhythmic drug action--blockade of stretch-activated channels.
    [Abstract] [Full Text] [Related] [New Search]