These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deiodination of iodothyronine sulfamates by type I iodothyronine deiodinase of rat liver.
    Author: Rutgers M, Heusdens FA, Visser TJ.
    Journal: Endocrinology; 1991 Sep; 129(3):1375-81. PubMed ID: 1874177.
    Abstract:
    The substrate behavior of synthetic N-sulfonated iodothyronines (iodothyronine sulfamates, TiNS) for the type I deiodinase was compared with that of the naturally occurring 4'-O-sulfonated iodothyronines (iodothyronine sulfates, TiS), which have been shown to be deiodinated 40-200 times more efficiently than the native iodothyronines. Deiodination was studied in incubations of rat liver microsomes with unlabeled or 3' (5')-125I-labeled T4NS, rT3NS, T3NS, and 3,3'-T2NS at 37 C and pH 7.2 in the presence of 5 mM dithiothreitol. Reaction products were analyzed by RIA or Sephadex LH-20 and HPLC. Kinetic studies were performed under initial reaction rate conditions to determine the apparent Michaelis Menten (Km) constants and maximum velocity values. In contrast to T4S, which is converted only by inner ring deiodination (IRD), T4NS underwent both IRD and outer ring deiodination (ORD), similar to T4, but more rapidly. At 10 nM T4NS substrate, T3NS was the major product observed, while no rT3NS accumulated due to its rapid conversion to 3,3'-T2NS. At least one third of the 3,3'-T2NS was converted by IRD, unlike 3,3'-T2 which is a pure ORD substrate. The type I deiodination efficiencies of T4NS IRD and ORD were 17-fold higher than with T4, mainly due to approximately 32-fold lower apparent Km values. Deiodination of rT3, the preferred type I substrate, was not improved by sulfamation. T3NS and 3,3'-T2NS were deiodinated 4-10 times more efficiently than T3 and 3,3'-T2, respectively, due to 2- to 4-fold decreases in apparent Km values with a concomitant doubling of maximum velocity values. N-Sulfonation stimulates type I deiodination to a similar extent as other side-chain modifications that eliminate the positive charge of the nitrogen (e.g. iodothyroacetic acids). However, the effects are less dramatic than those induced by 4'-sulfation with respect to both efficiency and specificity of the catalytic process.
    [Abstract] [Full Text] [Related] [New Search]