These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functions of FZR1 and CDC20, activators of the anaphase-promoting complex, during meiotic maturation of swine oocytes. Author: Yamamuro T, Kano K, Naito K. Journal: Biol Reprod; 2008 Dec; 79(6):1202-9. PubMed ID: 18753608. Abstract: Cell division cycle 20 (CDC20) and fizzy/cell division cycle 20 related 1 (FZR1) are activators of the anaphase-promoting complex (APC), which ubiquitinates M-phase regulating proteins, such as cyclin B and securin, and induces their degradation. In the present study, porcine CDC20 and FZR1 were cloned by reverse transcriptase-polymerase chain reaction, and their functions in the meiotic maturation of porcine oocytes were analyzed. FZR1 was readily detected in porcine immature oocytes by immunoblotting, but its levels decreased substantially during maturation. In contrast, CDC20 levels rose during oocyte maturation and were highest by the second meiotic metaphase. The inhibition of CDC20 expression by the injection of CDC20 antisense RNA induced the meiotic arrest at the first meiotic metaphase (M1) and the accumulation of a large amount of cyclin B. On the other hand, the inhibition of FZR1 expression accelerated cyclin B accumulation and the start of germinal vesicle breakdown (GVBD), but did not affect the exit from M1. Conversely, the overexpression of FZR1 by the injection of FZR1 mRNA suppressed the cyclin B accumulation and retarded GVBD. Surprisingly, the injection of CDC20 mRNA into the immature oocytes could not increase CDC20 expression, but increased cyclin B accumulation and accelerated the meiotic progression. As CDC20 is a substrate of APC (FZR1), CDC20 might have competed with cyclin B and inhibited the FZR1 function. These results suggest that porcine FZR1 and CDC20 work on the maintenance of meiotic arrest at the first meiotic prophase and on the exit from M1, respectively, and that their functional phases are strictly distinguished during porcine oocyte maturation.[Abstract] [Full Text] [Related] [New Search]