These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The peroxisome proliferator-activated receptor-gamma agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-alpha-dependent manner in vitro and in vivo in mice.
    Author: Orasanu G, Ziouzenkova O, Devchand PR, Nehra V, Hamdy O, Horton ES, Plutzky J.
    Journal: J Am Coll Cardiol; 2008 Sep 02; 52(10):869-81. PubMed ID: 18755353.
    Abstract:
    OBJECTIVES: Our aim was to investigate if the peroxisome proliferator-activated receptor (PPAR)-gamma agonist pioglitazone modulates inflammation through PPARalpha mechanisms. BACKGROUND: The thiazolidinediones (TZDs) pioglitazone and rosiglitazone are insulin-sensitizing PPARgamma agonists used to treat type 2 diabetes (T2DM). Despite evidence for TZDs limiting inflammation and atherosclerosis, questions exist regarding differential responses to TZDs. In a double-blinded, placebo-controlled 16-week trial among recently diagnosed T2DM subjects (n = 34), pioglitazone-treated subjects manifested lower triglycerides and lacked the increase in soluble vascular cell adhesion molecules (sVCAM)-1 evident in the placebo group. Previously we reported PPARalpha but not PPARgamma agonists could repress VCAM-1 expression. Since both triglyceride-lowering and VCAM-1 repression characterize PPARalpha activation, we studied pioglitazone's effects via PPARalpha. METHODS: Pioglitazone effects on known PPARalpha responses--ligand binding domain activation and PPARalpha target gene expression--were tested in vitro and in vivo, including in wild-type and PPARalpha-deficient cells and mice, and compared with the effects of other PPARgamma (rosiglitazone) and PPARalpha (WY14643) agonists. RESULTS: Pioglitazone repressed endothelial TNFalpha-induced VCAM-1 messenger ribonucleic acid expression and promoter activity, and induced hepatic IkappaBalpha in a manner dependent on both pioglitazone exposure and PPARalpha expression. Pioglitazone also activated the PPARalpha ligand binding domain and induced PPARalpha target gene expression, with in vitro effects that were most pronounced in endothelial cells. In vivo, pioglitazone administration modulated sVCAM-1 levels and IkappaBalpha expression in wild-type but not PPARalpha-deficient mice. CONCLUSIONS: Pioglitazone regulates inflammatory target genes in hepatic (IkappaBalpha) and endothelial (VCAM-1) settings in a PPARalpha-dependent manner. These data offer novel mechanisms that may underlie distinct TZD responses.
    [Abstract] [Full Text] [Related] [New Search]