These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PGJ2 antagonizes NF-kappaB-induced HIV-1 LTR activation in colonic epithelial cells.
    Author: Boisvert M, Côté S, Vargas A, Pasvanis S, Bounou S, Barbeau B, Dumais N.
    Journal: Virology; 2008 Oct 10; 380(1):1-11. PubMed ID: 18755491.
    Abstract:
    Intestinal epithelial cells play an important role in early stages of HIV-1 infection and long-term persistence of the virus. Here we determined the mechanism that regulates HIV-1 activation via prostaglandin J(2) (PGJ(2)) in Caco-2 cells. We showed that treatment of Caco-2 cells with PGJ(2) decreased the infectivity of a luciferase reporter virus, pHXB-luc, as well as HIV production following infection of cells with a X4-tropic virus by antagonizing sodium butyrate, a cellular activator known to induce HIV-1 transcription. Transfection of intestinal epithelial cells such as Caco-2, HT-29 and SW620 cells with full-length HIV-1 LTR (pLTR-luc) revealed that PGJ(2) reduced HIV-1 LTR-mediated reporter gene activity. The involvement of NF-kappaB in the PGJ(2)-dependent down-regulation of HIV-1 transcription was further assessed using the kappaB-regulated luciferase-encoding vectors. In Caco-2 cells, PGJ(2) decreased IKK activity, resulting in reduced NF-kappaB translocation to the nucleus. Since sodium butyrate has been associated with a chronic stress response in AIDS patients, our results suggest that addition of PGJ(2) in the environment of infected intestinal epithelial cells could reduce HIV-1 transcription.
    [Abstract] [Full Text] [Related] [New Search]