These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca).
    Author: Solti A, Gáspár L, Mészáros I, Szigeti Z, Lévai L, Sárvári E.
    Journal: Ann Bot; 2008 Nov; 102(5):771-82. PubMed ID: 18757882.
    Abstract:
    BACKGROUND AND AIMS: Cadmium (Cd) causes Fe-deficiency-like symptoms in plants, and strongly inhibits photosynthesis. To clarify the importance of Cd-induced Fe deficiency in Cd effects on photosynthesis, the recovery processes were studied by supplying excess Fe after the Cd symptoms had developed. METHODS: Fe-citrate at 10 microm or 50 microm was given with or without 10 microm Cd(NO3)2 to hydroponically cultured poplars (Populus glauca 'Kopeczkii') with characteristic Cd symptoms. Ion, chlorophyll and pigment contents, amount of photosynthetic pigment-protein complexes, chlorophyll fluorescence and carbon assimilation were measured together with the mapping of healing processes by fluorescence imaging. KEY RESULTS: In regenerated leaves, the iron content increased significantly, while the Cd content did not decrease. As a result, the structural (increase in the amount of photosynthetic pigments and pigment-protein complexes, decrease in the F690/F740 ratio) and functional (elevation of CO2 fixation activity and DeltaF/Fm') recovery of the photosynthetic machinery was detected. Cd-induced, light-stress-related changes in non-photochemical quenching, activity of the xanthophyll cycle, and the F440/F520 ratio were also normalized. Imaging the changes in chlorophyll fluorescence, the recovery started from the parts adjacent to the veins and gradually extended to the interveinal parts. Kinetically, the rate of recovery depended greatly on the extent of the Fe supply, and chlorophyll a/b ratio and DeltaF/Fm' proved to be the most-rapidly reacting parameters. CONCLUSIONS: Iron deficiency is a key factor in Cd-induced inhibition of photosynthesis.
    [Abstract] [Full Text] [Related] [New Search]