These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes. Author: Chistiakov DA, Potapov VA, Khodirev DC, Shamkhalova MS, Shestakova MV, Nosikov VV. Journal: Acta Diabetol; 2009 Mar; 46(1):43-9. PubMed ID: 18758683. Abstract: The KCNJ11 and ABCC8 genes encode the components of the pancreatic ATP-sensitive potassium (KATP) channel, which regulates insulin secretion by beta-cells and hence could be involved in the pathogenesis of type 2 diabetes (T2D). The KCNJ11 E23K and ABCC8 exon 31 variants have been studied in 127 Russian T2D patients and 117 controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach. The KCNJ11 E23 variant and the ABCC8 exon 31 allele A were associated with higher risk of T2D [Odds ratio (OR) of 1.53 (P=0.023) and 2.41 (P=1.95 x 10(-5))], respectively. Diabetic carriers of the ABCC8 G/G variant had reduced 2 h glucose compared to A/A+A/G (P=0.031). The G/G genotype of ABCC8 was also significantly associated with increased both fasting and 2 h serum insulin in diabetic and non-diabetic patients. A HOMA-beta value characterizing the beta-cell homeostasis was higher in the non-diabetic carriers homozygous for G/G (98.0+/-46.9) then for other genotypes (HOMA-beta = 85.6+/-45.5 for A/A+A/G, P=0.0015). The KCNJ11 E23K and ABCC8 exon 31 variants contribute to susceptibility to T2D diabetes, glucose intolerance and altered insulin secretion in a Russian population.[Abstract] [Full Text] [Related] [New Search]