These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode.
    Author: Manisankar P, Sundari PA, Sasikumar R, Palaniappan S.
    Journal: Talanta; 2008 Sep 15; 76(5):1022-8. PubMed ID: 18761149.
    Abstract:
    The cyclic voltammetric behaviour of three common pesticides such as isoproturon (ISO), voltage (VOL) and dicofol (DCF) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNTs/GCE), polyaniline (PANI) and polypyrrole (PPY) deposited MWCNT/GCE. The modified electrode film was characterized by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The electroactive behaviour of the pesticides was realized from the cyclic voltammetric studies. The differential pulse voltammetric principle was used to analyze the above-mentioned pesticides using MWCNT/GCE, PANI/MWCNT/GCE and PPY/MWCNT/GCE. Effects of accumulation potential, accumulation time, Initial scan potential, amplitude and pulse width were examined for the optimization of stripping conditions. The PANI/MWCNT/GCE performed well among the three electrode systems and the determination range obtained was 0.01-100 mgL(-1) for ISO, VOL and DCF respectively. The limit of detection (LOD) was 0.1 microgL(-1) for ISO, 0.01 microgL(-1) for VOL and 0.05 microgL(-1) for DCF on PANI/MWCNT/GCE modified system. It is significant to note that the PANI/MWCNT/GCE modified system results in the lowest LOD in comparison with the earlier reports. Suitability of this method for the trace determination of pesticide in spiked samples was also realized.
    [Abstract] [Full Text] [Related] [New Search]