These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles. Author: Friedrich M, Murer H, Berger EG. Journal: Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483. Abstract: Substitution of the alpha-amino group of amino acids by hydroxyl groups yields hydroxy analogues (HA), which have been ascribed beneficial effects in nitrogen-sparing diets for uremic patients. In this study, intestinal uptake of L-leucine HA (L-LeuHA) and L-lactate into rabbit jejunal brush-border membrane vesicles was investigated. An inward-directed H+ or Na+ gradient stimulated uptake of both labelled substrates in a voltage-clamped assay. The H+ gradient was the major driving force of uptake as compared with the Na+ gradient, and it led to a transient accumulation of both L-LeuHA and L-lactate. The proton ionophore carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) reduced the initial H(+)-gradient-driven uptake rates of both substrates, but was without effect on Na(+)-gradient-driven uptakes. The H(+)-gradient-driven L-LeuHA uptake was saturable (apparent Kt = 15.4 mM). Alpha-HA of L-leucine, L-isoleucine, L-valine, D-leucine, D-valine or L-lactate inhibited the H(+)-gradient-driven L-LeuHA or L-lactate uptakes whereas free branched-chain amino acids had no effect. Preloading the vesicles with one of the L- or D-HA of branched-chain amino acids or with L-lactate stimulated tracer L-LeuHA and also tracer L-lactate uptakes in the presence of a H+ gradient. It is concluded that H(+)-gradient-driven transport of L- and D-stereoisomeric HA of branched-chain amino acids as well as of L-lactate across rabbit intestinal brush-border membranes is mediated by the same carrier. Furthermore, there exists a Na+ gradient-driven L-lactate transport system in the rabbit intestinal brush-border membrane.[Abstract] [Full Text] [Related] [New Search]