These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. Author: Li SX, Wei D, Mak NK, Cai Z, Xu XR, Li HB, Jiang Y. Journal: J Hazard Mater; 2009 May 15; 164(1):26-31. PubMed ID: 18774644. Abstract: The degradation of diphenylamine (DPA) in aqueous solution by persulfate is investigated. Effects of pH, persulfate concentration, ionic strength, temperature and catalytic ions Fe(3+) and Ag(+) on the degradation efficiency of DPA by persulfate are examined in batch experiments. The degradation of DPA by persulfate is found to follow the pseudo-first-order kinetic model. Increasing the reaction temperature or persulfate concentration may significantly accelerate the DPA degradation. Fe(3+) and Ag(+) ions can enhance the degradation of DPA, and Ag(+) ion is more efficient than Fe(3+) ion. However, the increase of either the pH value or ionic strength will decrease the rate of DPA degradation. N-Phenyl-4-quinoneimine, N-carboxyl-4-quinoneimine, 4-quinoneimine and oxalic acid are identified as the major intermediates of DPA degradation, and a primary pathway for the degradation of DPA is proposed. The degradation of DPA in surface water, groundwater and seawater is also tested by persulfate, and more than 90% of DPA can be degraded at room temperature in 45min at an initial concentration of 20mgL(-1).[Abstract] [Full Text] [Related] [New Search]