These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data.
    Author: Foi A, Trimeche M, Katkovnik V, Egiazarian K.
    Journal: IEEE Trans Image Process; 2008 Oct; 17(10):1737-54. PubMed ID: 18784024.
    Abstract:
    We present a simple and usable noise model for the raw-data of digital imaging sensors. This signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data. We further explicitly take into account the clipping of the data (over- and under-exposure), faithfully reproducing the nonlinear response of the sensor. We propose an algorithm for the fully automatic estimation of the model parameters given a single noisy image. Experiments with synthetic images and with real raw-data from various sensors prove the practical applicability of the method and the accuracy of the proposed model.
    [Abstract] [Full Text] [Related] [New Search]